

national accelerator laboratory

TRANSFORMATIONS USEFUL IN LINEAR BETATRON THEORY

S. C. Snowdon

May 8, 1969

PURPOSE

To find a contact transformation in two degrees of freedom that effects the Courant-Snyder transformation simultaneously for both degrees of freedom. Subsequently, to find a contact transformation that transforms to actionangle variables in two degrees of freedom.

EQUATIONS OF MOTION

Betatron motion in the linear approximation with median plane symmetry is uncoupled and given by:

$$\frac{d^2q_x}{ds^2} + K_x(s) q_x = 0$$
 (1)

and

$$\frac{d^2q}{ds^2} + K_{y}(s) q_{y} = 0$$
 (2)

CONTACT TRANSFORMATION

Equations (1) and (2) may be derived from the hamiltonian $H = \frac{1}{2} p_x^2 + \frac{1}{2} K_x q_x^2 + \frac{1}{2} p_y^2 + \frac{1}{2} K_y q_y^2 , \qquad (3)$

where (p_x, q_x) and (p_y, q_y) are canonically conjugate variables for each degree of freedom.

To execute the first transformation, choose a linear transformation represented by the following generator

$$F_{2} (P_{x}, q_{x}, P_{y}, q_{y}; s) = \frac{1}{\sqrt{\beta_{x}}} P_{x} q_{x} + \frac{\beta_{x}^{'}}{4\beta_{x}} q_{x}^{2} + \frac{1}{\sqrt{\beta_{y}}} P_{y} q_{y} + \frac{\beta_{y}^{'}}{4\beta_{y}} q_{y}^{2}, \qquad (4)$$

where (P_x, Q_x) and (P_y, Q_y) are the new canonical momenta and coordinates. Also β_x and β_y are the periodic functions of s introduced by Courant and Snyder¹ which possess the properties:

$$\frac{1}{2} \beta_{x}^{"} \beta_{x} - \frac{1}{4} \beta_{x}^{'2} + \beta_{x}^{2} K_{x} = 1 , \qquad (5)$$

and

$$\frac{1}{2} \beta_{y}^{"} \beta_{y} - \frac{1}{4} \beta_{y}^{'2} + \beta_{y}^{2} \kappa_{y} = 1 .$$
 (6)

Equation (4) results in the coordinate transformation

$$p_{x} = \frac{1}{\sqrt{\beta_{x}}} \left(P_{x} + \frac{1}{2} \beta_{x}' Q_{x} \right) \tag{7}$$

$$q_{x} = \sqrt{\beta_{x}} Q_{x}$$
 (8)

$$P_{y} = \frac{1}{\sqrt{\beta_{y}}} (P_{y} + \frac{1}{2} \beta_{y}' Q_{y})$$
 (9)

$$q_{\mathbf{y}} = \sqrt{\beta_{\mathbf{y}}} Q_{\mathbf{y}} , \qquad (10)$$

and the new hamiltonian becomes

$$K = H + \frac{\partial F_2}{\partial s} = \frac{1}{2\beta_x} (P_x^2 + Q_x^2) + \frac{1}{2\beta_y} (P_y^2 + Q_y^2).$$
 (11)

To see that the customary equations of motion result,

one finds from Eq. (11)

$$\frac{dQ_{x}}{ds} = \frac{P_{x}}{\beta_{x}} , \quad \frac{dQ_{y}}{ds} = \frac{P_{y}}{\beta_{y}} , \qquad (12)$$

and

$$\frac{dP_{x}}{ds} = -\frac{Q_{x}}{\beta_{x}} , \quad \frac{dP_{y}}{ds} = -\frac{Q_{y}}{\beta_{y}} . \tag{13}$$

Then, if one introduces:

$$\xi = \frac{1}{v_{x}} \int \frac{ds}{\beta_{x}}$$
 , $\eta = \frac{1}{v_{y}} \int \frac{ds}{\beta_{y}}$ (14)

as is done by Courant and Snyder 1, one has

$$\frac{d^2 Q_X}{d\xi^2} + v_X^2 Q_X = 0 , \qquad (15)$$

and

$$\frac{d^2Q_y}{d\eta^2} + v_y^2 Q_y = 0 . {16}$$

ACTION-ANGLE VARIABLES

Finally, one may remove the s-dependence of the hamiltonian in Eq. (11) by transforming to the action-angle variables $(\rho_{\mathbf{x}},\ \phi_{\mathbf{x}},\ \rho_{\mathbf{y}},\ \phi_{\mathbf{y}}).$ Consider first only one degree of freedom. Take the generator of the form

$$F_1(Q,\phi;s) = \frac{1}{2} Q^2 f(\phi,s).$$
 (17)

Then

$$P = Qf,$$

$$\rho = -\frac{1}{2} Q^2 \frac{\partial f}{\partial \phi}, \qquad (18)$$

and the new hamiltonian is

$$W = \rho \frac{\left(\frac{f^2+1}{\beta} + \frac{\partial f}{\partial s}\right)}{\left(-\frac{\partial f}{\partial \phi}\right)}.$$
 (19)

Since the desire is to have W independent of s, choose $f(\phi,s)$ such that

$$\frac{f^2+1}{\beta} + \frac{\partial f}{\partial s} + C \frac{\partial f}{\partial \phi} = 0.$$
 (20)

The characteristics of Eq. (20) are solutions of

$$\frac{\mathrm{ds}}{\beta} = \frac{\mathrm{d}\phi}{\mathrm{C}\beta} = -\frac{\mathrm{df}}{1+\mathrm{f}^2} \tag{21}$$

which gives

$$\phi - Cs = C_1 ; Cot^{-1}f - \int \frac{ds}{\beta} = C_2 .$$
 (22)

A general solution of Eq. (20) is then

$$f(\phi,s) = Cot \left[g(\phi-Cs) + \left(\frac{ds}{\beta}\right)\right],$$
 (23)

where g is an arbitrary function. Any definite choice of g selects a particular canonical set (ρ,ϕ) that is suitable as an action-angle pair. To see that this is true, let (ρ_1,ϕ_1) be the pair generated by F_1 of Eqs. (17) and (22). Transform to the pair (ρ_2,ϕ_2) using the generator

$$F_2(\rho_2, \phi_1, s) = \rho_2 Cs + g(\phi_1 - Cs)$$
 (24)

Then

$$\rho_1 = \rho_2 g'(\phi_1 - Cs) , \qquad (25)$$

$$\phi_2 = Cs + g(\phi_1 - Cs) , \qquad (26)$$

and the new hamiltonian

$$U = C \rho_{2}g' + \rho_{2}[C - Cg'] = C\rho_{2}. \qquad (27)$$

But, from Eqs. (17) and (22)

$$P = \sqrt{\frac{2\rho_1}{g}} \quad \cos \left(g + \sqrt{\frac{ds}{\beta}}\right) \tag{28}$$

$$Q = \sqrt{\frac{2\rho_1}{g}} \sin \left(g + \int \frac{ds}{\beta}\right) , \qquad (29)$$

which, using Eqs. (25) and (26) becomes

$$P = \sqrt{2\rho_2} \cos \left(\phi_2 - \cos + \int \frac{ds}{\beta}\right)$$
 (30)

$$Q = \sqrt{2\rho_2} \sin \left(\phi_2 - \cos + \int \frac{ds}{\beta}\right). \tag{31}$$

Thus there is no loss of generality in choosing

$$g = \phi - Cs \tag{32}$$

in Eq. (22).

The relation of the constant C to the tune ν may be found by noticing that, since the hamiltonian is

$$W = C\rho , \qquad (33)$$

 $d\phi/ds=C$ or $2\pi\nu$ = Cx circumference. If the circumference is written as $2\pi R$ where R is the average radius

$$C = \frac{V}{R} . (34)$$

Thus

$$W = \frac{V}{R} \rho . \tag{35}$$

With two degrees of freedom the corresponding generator becomes

$$F_1(Q_x, \phi_x, Q_y, \phi_y; s) = \frac{1}{2} Q_x^2 \text{ Cot } \psi_x + \frac{1}{2} Q_y^2 \text{ Cot } \psi_y,$$
 (36)

where

$$\psi_{x} = \phi_{x} - \frac{v_{x}}{R} s + \int \frac{ds}{\beta} , \qquad (37)$$

and

$$\psi_{y} = \phi_{y} - \frac{v_{y}}{R} s + \int \frac{ds}{\beta} . \qquad (38)$$

This generator results in the transformation

$$P_{x} = \sqrt{2\rho_{x}} \cos \psi_{x} , \qquad (39)$$

$$Q_{x} = \sqrt{2\rho_{x}} \sin \psi_{x} , \qquad (40)$$

$$P_{V} = \sqrt{2\rho_{V}} \cos \psi_{V} , \qquad (41)$$

$$Q_{V} = \sqrt{2\rho_{V}} \sin \psi_{V} , \qquad (42)$$

and the new hamiltonian becomes

$$W = \frac{v_x}{R} \rho_x + \frac{v_y}{R} \rho_y . \qquad (43)$$

In summary the hamiltonian representing linear betatron motion with median plane symmetry has been successively transformed with the generators F_2 and F_1 to yield the hamiltonian in Eq. (43) which is independent of s. The overall transformation of the momenta and coordinates is

$$p_{x} = \sqrt{\frac{2\rho_{x}}{\beta x}} \left(\cos \psi_{x} + \frac{\beta_{x}}{2} \sin \psi_{x} \right) , \qquad (44)$$

$$q_{x} = \sqrt{2\beta_{x}\rho_{x}} \sin \psi_{x} , \qquad (45)$$

$$p_{y} = \sqrt{\frac{2\rho_{y}}{\beta y}} \left(\cos \psi_{y} + \frac{\beta_{y}}{2} \sin \psi_{y} \right) , \qquad (46)$$

$$q_{Y} = \sqrt{2\beta_{Y}\rho_{Y}} \sin \psi_{Y} . \tag{47}$$

The hamiltonian W, being independent of s is an invariant.

This invariant expressed in terms of the original canonical momenta and coordinates is

$$W = \frac{v_x}{2R\beta_x} \left\{ q_x^2 + \left(-\frac{\beta_x}{2} q_x + \beta_x p_x \right)^2 \right\} + \frac{v_y}{2R\beta_y} \left\{ q_y^2 + \left(-\frac{\beta_y}{2} q_y + \beta_y p_y \right)^2 \right\}.$$

$$(48)$$

Since $p_x = q_x$ and $p_y = q_y$, Eq. (48) is seen to have the form given by Courant and Snyder¹. In fact, as pointed out by Courant², the transformation from H to W which gives rise to the momenta and coordinate transformation of Eqs. (44) to (47) may be accomplished by a single generator.

$$F_{1} (q_{x}, \phi_{x}, q_{y}, \phi_{y}; s) = \frac{q_{x}^{2}}{2\beta_{x}} (\cot \psi_{x} + \frac{1}{2} \beta_{x}') + \frac{q_{y}^{2}}{2\beta_{y}} (\cot \psi_{y} + \frac{1}{2} \beta_{y}').$$

$$(49)$$

REFERENCES

- 1. E. D. Courant and H. S. Snyder, Annals of Physics 3, 1 (1958).
- 2. E. D. Courant, private communication.